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Activation of B2-adrenergic receptors inhibits osteoblastic bone formation and enhances oste-
oclastic bone resorption. Whether B-blockers inhibit ovariectomy-induced bone loss and decrease
fracture risk remains controversial. To further explore the role of B-adrenergicsignaling in skeletal
acquisition and response to estrogen deficiency, we evaluated mice lacking the three known
B-adrenergic receptors (B-less). Body weight, percent fat, and bone mineral density were signifi-
cantly higher in male B-less than wild-type (WT) mice, more so with increasing age. Consistent with
their greater fat mass, serum leptin was significantly higher in g-less than WT mice. Mid-femoral
cross-sectional area and cortical thickness were significantly higher in adult g-less than WT mice,
as were femoral biomechanical properties (+28 to +49%, P < 0.01). Young male -less had higher
vertebral (1.3-fold) and distal femoral (3.5-fold) trabecular bone volume than WT (P < 0.001 for
both) and lower osteoclast surface. With aging, these differences lessened, with histological ev-
idence of increased osteoclast surface and decreased bone formation rate at the distal femur in
B-less vs. WT mice. Serum tartrate-resistance alkaline phosphatase-5B was elevated in 3-less com-
pared with WT mice from 8-16 wk of age (P < 0.01). Ovariectomy inhibited bone mass gain and
decreased trabecular bone volume/total volume similarly in B-less and WT mice. Altogether, these
data indicate that absence of B-adrenergic signaling results in obesity and increased cortical bone
mass in males but does not prevent deleterious effects of estrogen deficiency on trabecular bone
microarchitecture. Our findings also suggest direct positive effects of weight and/or leptin on bone
turnover and cortical bone structure, independent of adrenergic signaling. (Endocrinology 150:
144-152, 2009)

vidence indicates that B-adrenergic signaling plays a key role in
E the regulation of bone remodeling. Sympathetic nerve fibers are
presentin bone and bone marrow (1-4), and B-adrenergic receptors
(B-AR) have been identified in osteoblastic cells (5-9). I vivo stud-
ies indicate that bone metabolism may be influenced both through
indirect activation of B-adrenergic signaling via hypothalamic-de-
rived neural pathways and through direct modulation of B-adren-
ergic activity by pharmacological intervention (8-12).
Mice devoid of leptin (0b/ob) or the signaling form of its
receptor (db/db) have, despite reduced gonadal function, mark-
edly increased body weight, fat, and vertebral trabecular bone
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volume (BV) but exhibit decreased cortical bone mass and thick-
ness (13, 14). The inhibitory effects of leptin on trabecular bone
have been attributed to hypothalamic activation of sympathetic
nervous system (SNS) activity that is ultimately mediated via
B2-AR on osteoblasts, reducing osteoblast proliferation and
bone formation, and stimulating osteoclastic activity by increas-
ing RANKL expression (8, 9, 13). The initial findings in rodents
have been confirmed in adult sheep, where intracerebroventric-
ular infusion of leptin markedly reduces bone formation (135).
Direct modulation of adrenergic activity by administration of
B-blockers or B-agonists also influences bone metabolism in

Abbreviations: B-AR, B-Adrenergic receptor; BA, bone area; BMD, bone mineral density;
BV, bone volume; Cort Th, cortical thickness; uCT, microcomputed tomography; KO,
knockout; MA, medullary area; OVX, ovariectomy; SMI, structure model index; SNS, sym-
pathetic nervous system; TA, total cross-sectional area; TbN, trabecular number; TbSp,
trabecular spacing; TbTh, trabecular thickness; TRACP5b, tartrate-resistance alkaline phos-
phatase-5B; TV, total volume; WT, wild type.
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vivo. For example, young mice treated with the nonspecific
B-blocker propranolol have enhanced vertebral trabecular BV
(8). Furthermore, bone loss induced by estrogen deficiency is
reportedly attenuated in rodents treated with propranolol (8, 10,
16). Yet, reports differ as to whether treatment with propranolol
inhibits the bone loss associated with skeletal unloading (17, 18).
In contrast, pharmacological activation of B-adrenergic signal-
ing inhibits skeletal acquisition (8, 12) and reduces bone mass
and bone strength in adult animals (11). Altogether, the skeletal
effects of pharmacological interventions that alter adrenergic sig-
naling are challenging to interpret, because there is growing evi-
dence that the bone-sparing effects of blocking 3-adrenergic signal-
ing are dose dependent with decreased benefits at higher doses (16).

Elefteriou and colleagues (9) reported that mice deficient in
B2-AR [B2-AR knockout (KO)] have normal body weight but
increased trabecular BV at 6 months of age. They also showed
that during growth 82-AR KO mice are resistant to ovariectomy
(OVX)-induced increases in bone resorption and decreases in
trabecular BV, thus concluding that integrity of sympathetic sig-
naling is necessary for the increase in bone resorption caused by
gonadal failure (9). A potential confounding aspect to their study
is the possibility of compensatory activity by other isoforms of
the B-AR, which although not clearly established in bone, has
been established in other tissues (19, 20). Thus, we and others
have suggested that 82-AR might not be the sole 8-AR involved
in the control of bone mass and remodeling (21, 22).

Data supporting an effect of B-blocker use on skeletal integrity
in humans are inconclusive, with studies reporting positive, nega-
tive, and no associations between -blocker use and fracture risk or
bone mineral density (BMD) (23-29). A randomized placebo-con-
trolled trial in postmenopausal women showed that propranolol
treatment led to significant decreases in serum osteocalcin, urinary
free deoxypyridinoline, and serum albumin, with no effect on serum
procollagen type I N-terminal peptide or total alkaline phosphatase
activity, suggesting that in normal postmenopausal women B-ad-
renergic blockade decreases bone turnover (30).

To further examine the role of B-adrenergic signaling in the skel-
eton, we evaluated bone acquisition and the response to OVX in
mice that lack the three known B-ARs (B-less). We hypothesized that
relative to wild-type (WT) mice, B-less mice would have increased tra-
becular BV and would be resistant to the deleterious effects of estrogen
deficiency. More precisely, if 82-AR is the main and/or only 8-AR
subtype involved in bone mass regulation, then B-less mice should
present skeletal phenotypes similar to 82-AR-null mice.

Materials and Methods

Overall approach

We evaluated the skeletal phenotype and response to estrogen defi-
ciency in mice lacking the three known B-AR (B-less). B-lessand WT mice
were derived on a mixed genetic background, are viable and fertile,
develop mild obesity with increasing age on normal rodent chow, and
develop marked obesity on a high-fat diet due to absence of diet-induced
thermogenesis (31). In particular, as described previously by Bachman
et al. (31), B-less mice were created by crossing the 81,2-AR KO with a
genetic background of FVB, C57BL/6], DBA/2, and 129/Sv] (32) to
B3-AR KO with a genetic background of FVB (19). The first breeding
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produced mice that were heterozygous for disruption of all three B-AR.
These were subsequently bred to select two lines each of mice that were
either homozygous null for B1-, B2-, and B3-AR genes (B-less) or ho-
mozygous WT for all three B-ARs. We used one of these lines, and mice
were subsequently bred as homozygous B-less or homozygous WT. Mice
used in these experiments were approximately six to eight generations
after the initial derivation of the WT and B-less lines. Thus, WT controls
were derived from the same mixed background but were not littermate
controls due to challenges of breeding a triple knockout from heterozy-
gous parents. To evaluate the skeletal phenotype of these mice, we as-
sessed body composition, BMD, serum leptin, and markers of bone turn-
over in vivo and trabecular and cortical bone morphology and femoral
biomechanics ex vivo in male mice at 6 and 16 wk of age. To test whether
B-less mice are resistant to deleterious effects of estrogen deficiency, we
performed ovariectomy (OVX) or sham-OVX in 8-wk-old B-less and
WT mice. In all experiments, mice were maintained under standard non-
barrier conditions and had access to mouse chow (Harlan Teklad 5542,
2.5% Ca, 1.2% P;) and water ad libitum. Calcein (15 mg/kg) was injected
sc 7 and 2 d before death. The protocol and procedures were approved
by the Institutional Animal Care and Use Committee of Beth Israel Dea-
coness Medical Center (Boston, MA).

BMD and bone morphology

We evaluated body composition and total body, spine, and femoral
BMD (grams per square centimeter) iz vivo using peripheral dual-energy
x-ray absorptiometry (pDXA, PIXImus; GE-Lunar, Madison, WI) (33—
37). We assessed trabecular and cortical bone architecture using mi-
crocomputed tomography (wCT40; Scanco Medical AG, Basserdorf,
Switzerland), employing a 12-pum isotropic voxel size. Specifically, tra-
becular bone architecture was evaluated at the fifth lumbar vertebra and
distal femoral metaphysis, whereas cortical bone morphology was eval-
uated at the femoral midshaft, as previously described (36, 37).

For all wCT evaluations, we used a nominal isotropic voxel size of 12
pm. Images were subjected to Gaussian filtration and segmented using
an adaptive-iterative algorithm applied to each specimen (38). Morpho-
metric parameters, including BV fraction [BV/total volume (TV), per-
cent], trabecular number (TbN, per millimeter), trabecular thickness
(TbTh, micrometers), trabecular separation (TbSp, micrometers), struc-
ture model index (SMI), and connectivity density (per cubic millimeter)
were computed without assumptions regarding the underlying bone ar-
chitecture (39, 40). At the femoral midshaft, 50 transverse CT slices were
obtained and used to compute the total cross-sectional area (TA, square
millimeters), cortical bone area (BA, square millimeters), medullary area
(MA, square millimeters), cortical thickness (CortTh, um), and bone
area fraction (BA/TA, percent). We also used the CT images to measure
the anteroposterior and mediolateral diameters, the area moments of
inertia about the anteroposterior and mediolateral axes (I,, and [

ap ml>

millimeter?), and the polar moment of inertia (J, millimeter?).

Femoral biomechanics

Femoral biomechanical properties were assessed by three-point
bending in 16-wk-old male B-less and WT mice, as previously described
(41,42). Load was applied at a constant rate (0.05 mm/sec) until failure.
We measured failure load (newtons), bending stiffness (newtons per mil-
limeter), and work-to-failure (newton-millimeters) from the load-dis-
placement curve and computed the apparent elastic modulus (megapas-
cal) and ultimate strength (gigapascal) using the relevant midfemoral
cross-sectional geometry measured from uCT (43).

Bone histomorphometry

Femurs were dehydrated in graded ethanol and embedded in methyl-
methacrylate. Five and 8-um-thick sagittal sections were cut with a Leica
Corp. Polycut E microtome (Leica Corp. Microsystems AG, Glattbrugg,
Switzerland) and stained with modified Goldner’s trichrome (5-wm sec-
tions) for assessment of static histomorphometric variables or left un-
stained (8-pm sections) for assessment of calcein fluorescence and dy-
namic indices of bone formation. Histomorphometric measurements
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were performed on the secondary spongiosa of the distal femoral me-
taphysis (beginning 690 wm proximal to the growth plate and extending
344 wm proximally) using a Leica Corp. Q image analyzer at X40 mag-
nification. All parameters were calculated and expressed according to
standard formulas and nomenclatures (44).

Serum measurements

Serum leptin was measured as previously described (31). Serum IGF-I
was assessed by RIA (Alpco, Windham, NH), as previously described
(45). Serum osteocalcin was measured by RIA with a goat antimouse
osteocalcin antibody and donkey antigoat secondary antibody (Biomed-
ical Technologies Inc., Stoughton, MA). Serum tartrate-resistance alka-
line phosphatase-5b (TRACPSb) was measured according to the man-
ufacturer’s instructions (SBA Sciences, Turku, Finland).

Data analysis

Standard descriptive statistics were computed and data checked for
normality. We used ANOVA and unpaired ¢ tests to test for significant
differences between B-less and WT mice. All tests were two-tailed, and
differences were considered statistically significant at P < 0.05. Data are
presented as mean * SEM, unless otherwise noted.

Results

Body composition and skeletal phenotype of male B-less
mice

Whereas femoral length did not differ, male B-less mice had
a higher body weight, lean mass, fat mass, body fat percentage
(and fat mass), total body BMD, and femoral BMD than WT
mice from 8-16 wk of age (Fig. 1). Consistent with their higher
fat mass, male B-less mice had 2-fold higher serum leptin con-
centrations (B3-less 4.95 = 1.55 ng/mlvs. WT 1.18 = 0.16 ng/ml,
P < 0.01). At 6 wk of age, at both the vertebral body and distal
femur, B-less had significantly higher trabecular BV (BV/TV,
+33% at vertebral body and +77% at distal femur), thickness, and
number along with decreased TbSp compared with WT (Table 1
and Figs. 2 and 3). However, by 16 wk of age, there were no sig-
nificant differences in trabecular BV/TV at either site, although
TbTh remained significantly higher in B-less compared with WT
(Table 1). Trabecular BV/TV at distal femur declined 50% between
6 and 16 wk of age in B-less compared with less than 20% in WT.

At the femoral midshaft, total cross-sectional area (0.05 <
P < 0.10) and area moments of inertia (P < 0.05) were greater
in 6- and 16-wk-old B-less compared with WT mice (Table 1 and
Fig. 4). Cortical TbSp and cortical thickness were increased in
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16-wk-old B-less mice, although the ratio of cortical bone area to
TA (i.e. BA/TA) did not differ at either age (Table 1). Biome-
chanical tests showed that femora from 16-wk-old B-less mice
had increased peak load, stiffness, and work-to-failure (P < 0.01
for all). However, the estimated elastic modulus and ultimate
strength did not differ (data not shown), indicating that the in-
creased structural properties in B-less mice were due to their
larger femoral size.

Bone histomorphometry and serum measurements in
B-less and WT mice

Histomorphometric analysis of the distal femoral metaphysis
showed that at 6 wk of age, B-less mice had decreased osteoclast
surface and number compared with WT, with no difference in
bone formation indices (Table 2). In contrast, by 16 wk of age,
B-less mice had slightly, although not significantly, higher oste-
oclast number and significantly reduced bone formation rate
compared with WT (Table 2). Consistent with the age-related
increase in osteoclast surface in B-less mice (as opposed to the
decrease in WT), serum markers of bone turnover were higher in
B-less compared with WT mice from 8-16 wk of age. Specifi-
cally,at 8 wk of age, TRACP5b (B-less 4.25 = 0.27 U/liter vs. WT
2.61 = 0.50 Ulliter, P = 0.01) and osteocalcin (B-less 267 + 28
ng/ml vs. WT 150 = 27 ng/ml, P = 0.02) were 62 and 78%
higher, respectively, in B-less than WT mice. At 16 wk of age,
serum TRACP5b remained significantly higher in B-less mice,
whereas osteocalcin was no longer increased compared with WT
(data not shown).

Skeletal response to estrogen deficiency in growing
B-less and WT mice

To test whether lack of adrenergic signaling affects the skel-
etal response to estrogen deficiency, we performed OVX or sham
surgery in 8-wk-old WT and B-less mice (n = 9-12 per group).
In contrast to male B-less mice, at baseline, female B-less mice
weighed slightly less than WT (B-less 19.1 = 0.4 gvs. WT 21.5 =
0.4 g, P < 0.001) and had similar total body, spine, and femur
BMD as WT. Like the males, however, female B-less had signif-
icantly higher body fat percentage (B-less 22.2 = 0.6% vs. WT
16.7 £ 0.4%, P < 0.001) and total body fat mass than WT.

Over the 8-wk study, body weight, fat mass, total body BMD,
and femoral shaft BMD increased significantly compared with
baseline in all groups (0. 0001 < P < 0.04, Fig. 5). In sham-
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FIG. 1. Longitudinal in vivo assessment of body composition and BMD in male WT (O) and B-less ((J) mice (n = 8-9 per group). A, Body weight (grams);

B, body fat (percent); C, total body BMD (grams per square centimeter); D,
vs. WT. Error bars represent sem.

femoral BMD (grams per square centimeter). *, P < 0.05; **, P < 0.001 p-less
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TABLE 1. Skeletal characteristics of male B -less mice at 6 and 16 wk of age

WT (n = 8) B-less (n = 7) WT (n =9) B-less (n = 8)
Vertebral trabecular
BV/TV (%) 185+ 0.6 24.4 = 1.0° 23.0+0.7 25.1 +0.9
TbTh (um) 47.8 0.3 53.9 + 1.9° 542 +0.8 64.1 = 1.4°
TbN (mm™") 472 £ 0.13 521 *+0.21 444 +0.13 418 £0.13
TbSp (um) 217 =7 197 £ 9 232 £ 8 247 £ 8
Distal femur
BV/TV (%) 16.2 = 1.2 28.7 = 1.2¢ 134 +£1.2 144 13
TbTh (um) 48.4 += 0.6 57.5 + 1.6 51.2+09 57.4 + 1.3
TbN (mm~") 5.76 = 0.21 7.22 £ 0.11¢ 493 +0.17 455+ 0.19
TbSp (um) 174 = 8 132 + 3¢ 204 + 8 223 =10
Femoral midshaft
TA (mm?) 1.54 + 0.06 1.77 £ 0.10 1.56 = 0.04 1.86 = 0.07¢
BA (mm?) 0.70 = 0.03 0.79 = 0.05 0.75 = 0.03 0.94 + 0.04°
MA (mm?) 0.85 + 0.03 0.98 + 0.05% 0.81 = 0.02 0.93 = 0.03°
BA/TA (%) 45.0 = 0.5 446 £ 0.8 48.0 = 1.2 50.2 = 1.1
Cort Th (um) 180 + 4 188 + 67 194 + 7 223 +7°
Imax (mm®*) 0.17 = 0.01 0.22 +0.01° 0.18 = 0.01 0.29 + 0.02¢
Imin (mm?) 0.09 = 0.01 0.13 £ 0.01° 0.10 = 0.01 0.15 = 0.01
J (mm%) 0.26 = 0.02 0.35 + 0.03° 0.29 = 0.02 0.44 + 0.03¢
Femoral biomechanics
Peak load (N) NA NA 178 £ 0.6 26.5 = 1.0¢
Stiffness (N/mm) NA NA 105 =7 135 + 7°
Work-to-failure (N-mm) NA NA 6.6 +0.5 10.5 +2.7°

Results are mean = sem. Cort Th, Cortical thickness; Imax, maximum moment of inertia; Imin, minimum moment of inertia; J, polar moment of inertia; N, newtons; NA, not

available.
P < 0.05vs. WT.
bp<0.01vs. WT.

©P < 0.001 vs. WT.

operated mice, weight gain was greater in B-less than WT mice
(P = 0.04). As expected, in WT mice, body weight and fat mass,
expressed either as an absolute or percentage change, increased
more in OVX than sham-operated mice (Fig. 5). For example,

body weight increased 3.9 * 0.6 g (vs. baseline) in WT-OVX vs.

2.1 = 0.6 gin WT-sham (P = 0.048 vs. WT-OVX), and fat mass
increased 1.7 = 0.4 gin WT-OVX compared with 0.7 = 0.2 g in
WT-sham (P = 0.04 vs. WT-OVX). In contrast, OVX did not

FIG. 2. Two-dimensional uCT-derived images of the fifth lumbar
vertebrae in male 6-wk (A) and 16-wk (B) WT and 6-wk (C) and 16-wk (D)
B-less mice. Scale bar, 1 mm.

FIG. 3. Three-dimensional uCT-derived images of the distal femoral
metaphysis in male 6-wk (A) and 16-wk (B) WT and 6-wk (C) and 16-wk (D)
B-less mice.
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FIG. 4. Two-dimensional uCT images of the midfemoral cross-section in
male 6-wk (A) and 16-wk (B) WT and 6-wk (C) and 16-wk (D) B-less mice.

lead to further increases in body weight and fat mass in B-less
mice. In both WT and B-less mice, OVX significantly reduced the
gain in total body BMD and femoral BMD, expressed either in
absolute units or percent increase (Fig. 5). Specifically, total body
BMD increased 7.3 and 6.2% in WT-OVX and B-less OVX,
respectively, compared with 12.7 and 11.0% in WT-SHAM and
B-less sham (P < 0.005, OVX vs. sham). Gains in femoral BMD
were similarly inhibited by estrogen deficiency, because femoral
shaft BMD increased 8.1 and 5.9% in WT-OVX and B-less OVX
mice, respectively, compared with 14.3 and 13.1% in WT-sham
and B-less sham groups (P < 0.005, OVX vs. sham-OVX).

In sham groups, trabecular BV/TV at the spine and distal
femur did not differ between B-less and WT females (Table 3),
similar to males of the same age (i.e. 16 wk, Table 1). The B-less
females tended to have smaller midfemoral cross-sectional area
than WT, consistent with their lower body weight.

In response to OVX, trabecular architecture was significantly
deteriorated in both WT and B-less compared with sham con-
trols (Table 3 and Fig. 6). Specifically, compared with sham-
operated mice, vertebral trabecular BV/TV, number and con-
nectivity density were lower, whereas TbSp and SMI were higher
inboth WT and B-less OVX (0.01 < P < 0.06). At the vertebrae,
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the magnitude of difference between OVX and sham was similar
in WT and B-less (Fig. 6). A similar pattern was seen at the distal
femur, although the magnitude of difference between OVX and
sham tended to be greater in B-less mice. There were no signif-
icant effects of OVX on midfemoral cortical parameters, al-
though MA tended to be higher and TbSp fraction tended to be
lower in OVX compared with sham in both B-lessand WT (Table
3). Serum markers of bone turnover (osteocalcin and TRACPS5b)
were significantly higher in B-less than WT at baseline (P <
0.05), declined by approximately 50% from 8-16 wk of age
irrespective of genotype or treatment (P < 0.01) and remained
significantly elevated in B-less compared with WT at 16 wk of
age (P < 0.01).

Discussion

In this study, we assessed body composition and skeletal char-
acteristics in mice deficient in the three known B-AR (B-less)
during normal growth and aging and in response to OVX. We
confirmed previous findings of the role of B-adrenergic signaling
in bone mass acquisition and maintenance but not in estrogen
deficiency. We found that 1) male B-less have an early increase
in total body BMD, trabecular BV, and cortical bone parameters
and exhibit further increases in total body BMD and cortical
bone as they become obese with age. In contrast, B-less mice
exhibit an exaggerated loss of trabecular bone with age, consis-
tent with an increase in osteoclast surface and bone turnover
relative to WT. We also found that 2) growing female B-less and
WT mice have similar skeletal deterioration after OVX, but
B-less mice are protected from OVX-induced weight gain.

The B-less mice represent an interesting model in which to
explore interactions between central and peripheral regulation
of bone mass and microarchitecture. The higher body fatin B-less
leads to increased circulating leptin. Generally, this increased
circulating leptin would be predicted to influence bone mass via
hypothalamic-SNS pathways; however, given the lack of B-AR,
the increased leptin levels can exert their effects on bone only via
peripheral pathways. Whereas the central (hypothalamic) ac-
tions of leptin increase sympathetic signaling, activate osteoblast
B-AR, and decrease trabecular bone mass, circulating leptin has
been shown to have direct anabolic effects on osteoblasts,
thereby increasing periosteal bone formation (46). Thus, we ini-
tially hypothesized that B-less mice would have increased tra-

TABLE 2. Quantitative histomorphometry of the secondary spongiosa of the distal femur in male WT and g -less mice

6 wk 16 wk
WT B -less WT B -less
OcS/BS (%) 99=x12 5.6 £ 0.4° 35*x12 6.3 + 0.5
NOc/BA (mm™1) 1076 = 151 585 =+ 957 500 = 166 808 = 66
MS/BS (%) 26328 32459 374 =53 216 =41
MAR (nm/d) 1.29 = 0.29 1.08 = 0.10 1.09 = 0.06 0.73 =0.12
BFR (um3/um? - d) 0.36 = 0.11 0.35 = 0.08 0.41 = 0.06 0.15 = 0.03°

Results are mean = sim; n = 4 per group. BFR, Bone formation rate, surface referent; BS, bone surface; MAR, mineral apposition rate; MS, mineralizing surface; NO</

BA, osteoclast number per bone area; OcS, osteoclast surface.
2P <0.05vs. WT.
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FIG. 5. Percent increase (mean = se) from baseline in body weight (A), percent body fat (B), total body BMD (C), and femoral BMD (D) in B-less OVX
(white bars, n = 10), B-less sham-OVX (black bars, n = 9), WT OVX (white bars, n = 11), and WT sham-OVX (black bars, n = 12) mice. *, P = 0.07; **,

P < 0.05.

becular and cortical bone mass relative to WT mice and would
be resistant to the deleterious effects of estrogen deficiency.

Our results partly support the hypothesis that trabecular bone
mass will be increased in the absence of the negative effects of
B-adrenergic signaling on bone remodeling, because both verte-
bral and femoral trabecular bone mass and microarchitecture
were enhanced in young (i.e. 6-wk-old) B-less mice. This appears
to be due to reduced osteoclast number, perhaps coupled with a
trend toward increased mineralizing surface as measured by his-
tomorphometry. These observations are concordant with the
trabecular bone phenotype of 82-AR KO mice (9) and the pro-
posed mechanism of action of 82-AR signaling (i.e. stimulation
of RANKL and inhibition of osteoblastic bone formation). How-
ever, B-less mice did not have an increased bone formation rate
and actually had a significantly lower bone formation rate at 16
wk of age, providing further evidence to support the tenet that
B1-and/or B3-adrenergicsignaling may be necessary to stimulate
bone formation in the absence of B2 -AR (21, 22).

At 16 wk of age, there was no difference in trabecular BV

between WT and B-less mice, suggesting that the normal age-
related changes in trabecular bone were enhanced in the absence
of B-AR, particularly in the distal femoral metaphysis, perhaps
due to increased bone turnover, as reflected by their higher os-
teocalcin and TRACPSb levels, and a trend for higher osteoclast
surface. The mechanisms for the later increase in bone turnover
are unknown but demonstrate clearly that absence of adrenergic
signaling is not sufficient to prevent bone loss.

As hypothesized, B-less males had increased cortical bone
mass, cross-sectional geometry, and biomechanical properties at
the midfemoral diaphysis. These increases in diaphyseal cortical
bone properties may be due to the higher body mass and/or
increased peripheral leptin activity in -less compared with WT.
Note that increased fat mass in B-less mice was not deleterious to
cortical bone properties. One might speculate that the higher
weight and circulating leptin levels stimulate periosteal bone for-
mation and could in turn trigger local adaptive mechanisms to
inhibit trabecular bone formation or enhance trabecular bone

TABLE 3. Effect of OVX on trabecular and cortical bone morphology in growing B -less and WT mice assessed by uCT

WT B -less P value
Sham (n = 12) OoVX (n = 11) Sham (n = 9) OVX (n = 10) OVX Genotype
Vertebral body
BV/TV (%) 23314 18.8 + 1.3° 252 +14 20.6 = 1.8° 0.0003 NS
TbTh (um) 52.7 1.0 50.2 + 0.8° 533+ 0.7 51.7 £ 11 0.04 NS
TbN (mm~7) 430 = 0.19 3.67 +0.18° 416 +0.13 3.65 * 0.20° 0.001 NS
ThSp (uwm) 248 + 13 291 + 13% 255 +9 294 + 15 0.001 NS
Connectivity density (mm™~3) 206 * 12 154 + 9¢ 218 = 16 165 + 14 0.0003 NS
SMI 0.63 =0.15 1.00 * 0.05° 0.28 = 0.18 0.66 = 0.11° 0.007 0.01
Distal femur
BV/TV (%) 11.2+13 9.7 £0.5 9.2 +0.9 6.9 +0.77 0.05 0.018
ThTh (um) 493 +0.8 482 = 0.6 51.1 £0.8 509 + 1.2 NS 0.01
ToN (mm™") 3.47 =0.17 3.35 +0.09 3.19 £ 0.15 2.80 + 0.14° 0.08 0.006
TbSp (um) 295 + 18 301 =9 320 =17 366 = 207 NS 0.009
Connectivity density (mm™3) 87.4 +£11.7 80.6 + 8.0 68.2 = 10.0 435 +6.9° NS 0.007
SMI 243 +0.19 2.56 = 0.07 2.77 £0.12 3.05 +0.12 NS 0.004
Femoral midshaft
TA (mm?) 1.50 = 0.04 1.55 = 0.03 1.27 = 0.05 1.34 = 0.04 NS <0.001
BA (mm?) 0.73 =0.02 0.70 = 0.02 0.68 + 0.02 0.70 = 0.02 NS 0.04
MA (mm?) 0.77 = 0.02 0.83 +0.02 0.59 + 0.03 0.64 + 0.03 0.06 <0.001
BA/TA (%) 485+ 0.7 47.0 = 0.6 54.0 = 1.0 52.3+ 1.3 0.09 <0.001
Cort Th (um) 191 x4 189 = 3 202 =3 200 = 4 NS 0.003

Results are mean = sem. Measurements were performed 8 wk after OVX or sham-OVX surgery (i.e. at 16 wk of age). Cort Th, Cortical thickness; NS, not significant.

= OVX vs. sham within genotype: @ 0.05 < P < 0.10; ® P < 0.05; < P < 0.01.
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FIG. 6. Difference (in percent) in trabecular BV/TV, TbN, and connectivity
density (ConnD) between OVX and sham-OVX at the vertebrae and distal
femur in wild-type and B-less mice (n = 9-12 per group). *, 0.05 < P <
0.10; **, P < 0.05 for sham vs. OVX.

resorption to remove cancellous bone that may be excessive in
the presence of increased cortical bone properties (46).

As expected, ovariectomized WT mice had greater gains in
weight and body fat than sham-operated controls. In contrast,
B-less mice had no additional weight or fat gain in response to
OVX compared with sham-operated controls. The mechanisms
underlying this observation are unknown, but other studies have
established that body weight regulation is altered in B-less mice
(31). Furthermore, our observation is consistent with a previous
study in which mice with germline deletion of hypothalamic neu-
ropeptide Y2 (NPY2) receptors were protected from fat mass
gain after OVX (47). Thus, at least two hypothalamic pathways
are implicated in OVX-induced increases in body mass, and both
likely involve changes in leptin secretion. Estrogen deficiency is
associated with decreased circulating leptin and central leptin
insensitivity (48, 49), but increased leptin transgene expression
in the hypothalamus blocks OVX-induced hyperphagia and
weight gain (50). Interruption of this mechanism in B-less and
NPY2 KO mice may offer some protection from OVX-induced
fat gain.

With regard to OVX-induced bone loss, we found that B-less
and WT exhibited similar declines in trabecular bone after OVX
and that the magnitude actually tended to be greater in B-less
compared with WT mice, consistent with the age-related trabec-
ular bone loss in male B-less mice. Although OVX had no ap-
parenteffect on serum markers of bone turnover, likely due to the
relatively late sampling time, they were higher in B-less than WT
both before and after OVX and declined by approximately 50%
from 8-16 wk in all groups. These results are somewhat unex-
pected, because prior studies reported OVX-induced bone loss
was inhibited in mice lacking 82-AR and in rodents treated with
B-blockers (8, 10, 16). One would therefore expect similar pro-
tection from OVX-induced bone loss in B-less mice. However, a
comparison of the results of the current study to the phenotypes
of the B2-AR and B1,2-AR KO suggests that different effects of
B2-AR and B1-AR in bone may explain some of the differences
in results (22).
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Specifically, in contrast to B-less mice, the B2-AR KO has
lower body weight and fat than WT, yet at older ages, the B2-AR
KO has higher vertebral trabecular BV/TV, bone formation rate,
and osteoblast number as well as decreased osteoclastic activity
(9). In comparison, mice null for both the B1- and B2-AR
(B1,2-AR KO) have lower body weight but similar fat mass to
WT and do not have a high bone mass phenotype. Relative to
WT, B1,2-AR KO mice have similar vertebral trabecular BV, and
lower midfemoral cortical thickness and cross-sectional geomet-
ric properties (51). These differences support the possibility of
opposing effects of the B1- and B2-AR on bone and may also
explain conflicting data on the effects of B-blockers on bone (21).
At low doses, propranolol stimulates bone formation and inhib-
its resorption, but this effect disappears at higher doses (52). It
has been proposed that propranolol affects the B2-AR at lower
doses, suppressing bone resorption, but acts through the B1-AR
at higher doses, reducing its protective effects (21, 46). Further-
more, although B3-AR is not expressed in bone, but rather pri-
marily in adipose tissue, it may have an indirect role in mediating
skeletal response to estrogen deficiency by regulation of fat mass
and peripheral aromatization of estrogen.

Use of the B-less model has both strengths and limitations. On
the one hand, with the ablation of all three AR, there is no pos-
sibility of compensatory up- or down-regulation of other iso-
forms of the B-AR, as is observed in models where a single 8-AR
is deleted (19, 20). Yet, unlike the 82-AR KO, which has similar
body composition to WT, B-less can have increased body weight
and fat compared with WT even on a normal chow diet. This
makes the model more complex, because in addition to absence
of adrenergic signaling, B-less have increased mechanical loading
as well as altered endocrine factors that influence bone metab-
olism. Furthermore, derivation of the B-less on a mixed genetic
background and the lack of littermate controls may confound
interpretation of these results. However, initial studies found
similar metabolic phenotypes in two lines of B-less mice de-
rived on the mixed genetic background, leading the study
authors to conclude that the effects of genetic disruption were
more profound than the possible contribution of the mixed
genetic background (31). Although having B-less on a pure
genetic background would eliminate these concerns, attempts
to do this have thus far proven unsuccessful (D. Kong, per-
sonal communication).

These limitations notwithstanding, our data extend the knowl-
edge regarding effects of B-adrenergic signaling on the skeleton. Of
interest, the phenotype of B-less mice appears more similar to
that of mice lacking leptin (i.e. ob/ob mice, who are obese with
low sympathetic tone) than any model of deficient adrenergic
signaling, except that B-less have high leptin levels and do not
exhibit gonadal deficiency and hypercorticism, both present in
the ob/ob model. High leptin levels in the B-less mouse likely
explain the observation that whereas 0b/ob mice have markedly
reduced cortical bone mass and thickness (14), B-less mice have
increased cortical parameters, presumably due to leptin stimu-
lation of cortical bone through peripheral pathways. The B-less
model therefore emphasizes the non-SNS-mediated effects of
leptin on bone mass regulation.

Following observations that bone remodeling is mediated in
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part by B-adrenergic signaling via the central nervous system (13)
and that pharmacological inhibition of B-adrenergic signaling
inhibits deleterious skeletal effects of estrogen deficiency in an-
imal models (8), there has been keen interest in determining ef-
fects of B-blockers on BMD and fracture risk. Results from ob-
servational studies of B-blocker use and fracture risk have been
inconsistent, showing positive, negative, and no effect on frac-
ture risk, highlighting the challenges in interpreting these types of
studies. Confounding factors include the underlying disease for
which the B-blockers are prescribed, along with possible comor-
bidities and medications (53). Although a metaanalysis showed
protective effects of B-blocker use (54), large cohort studies and
prospective randomized studies have shown modest or no effects
of B-blocker use on fracture risk (53). Because B-less mice were
not protected from the deleterious effects of estrogen deficiency,
our study indicates that some of the positive skeletal effects seen
in clinical studies of B-blockers may be due to concomitant med-
ications or other confounding factors.

In summary, our data indicate that global absence of B-ad-
renergic signaling results in obesity and increased trabecular BV
inyoungand increased cortical bone mass in older males but does
not prevent deleterious effects of estrogen deficiency on trabec-
ular bone. Thus, our data do not support the use of B-blockers
to prevent postmenopausal bone loss and fractures. Our findings
also suggest a direct positive effect of weight and/or increased
circulating leptin on bone turnover and cortical bone structure,
independent of adrenergic signaling.
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