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Abstract Vertebral fractures (VFxs) are the most common
osteoporotic fracture, and are a strong risk factor for future
fracture. The presence of a VFx greatly increases the risk of
sustaining subsequent VFxs—a phenomenon often referred
to as the “vertebral fracture cascade.” VFxs do not occur
uniformly along the spine, but occur more often at the mid-
thoracic and thoracolumbar regions than elsewhere. It is
likely that both the vertebral fracture cascade and the
bimodal distribution of VFx along the spine are attributable
to biomechanical factors. VFxs occur when the forces
applied to the vertebral body exceed its strength. Loading
on the spine is primarily determined by a person’s height,
weight, muscle forces, and the task or movement per-
formed, but can also be affected by other factors, such as
spinal curvature and invertebral disk deterioration. Verte-
bral strength is determined mainly by bone size, shape, and
bone mineral density, and secondarily by bone micro-
architecture, collagen characteristics, and microdamage.
Better understanding of VFx etiology is hampered by the
fact that most VFxs do not come to clinical attention;
therefore, the factors and activities that cause VFxs remain
ill defined, including possible differences in the etiology of
acute fractures versus those of slow onset. Additional

research is needed to elucidate the precise mechanical,
morphologic, and biological mechanisms that underlie VFx
to improve strategies for assessing VFx risk and preventing
the vertebral fracture cascade.
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Introduction

Vertebral fractures (VFxs) are the hallmark of osteoporosis,
and are associated with height loss, spinal deformity,
chronic pain, and reduced quality of life. They are the
most common osteoporotic fracture, occurring in 30% to
50% of people over the age of 50 years [1]. VFxs are also
critically important because they are a strong predictor of
future fracture risk at any site, independent of bone mineral
density (BMD) [2, 3]. The risk of sustaining a new VFx is
severalfold higher in those who already have a VFx
compared to those with no VFx, and increases exponen-
tially with the number and severity of prevalent fractures.
Of great concern is the high rate of subsequent VFx
following an initial fracture—often referred to as the
“vertebral fracture cascade” [4]. As many as 20% of
women with a prevalent VFx will suffer a new fracture
within 1 year [5]. A fracture occurs when the forces applied
to the vertebrae exceed its strength, and therefore factors
related to both—skeletal fragility and spinal loading—may
play important roles (Fig. 1). Yet, studies of the etiology of
VFxs are hindered by the fact that only 25% to 30% of
VFxs come to clinical attention, and therefore the con-
ditions, activities, and events that lead to a VFx remain ill
defined. Thus, despite the phenomenal personal and public
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health impact of VFx, the underlying biomechanical
mechanisms that result in VFx remain largely unknown. It
is possible that a more thorough knowledge of the
biomechanics of the spine could lead to a better identifica-
tion of people who are at risk for VFxs.

Location of Vertebral Fractures Along the Spine

An important observation is that despite low bone mass
being generally thought of as a systemic disorder, VFxs do
not occur uniformly along the vertebral column. Rather,

they occur more often at the mid-thoracic (T7-T8) and
thoracolumbar (T11-L1) regions than elsewhere in the spine
[6, 7]. The reasons underlying this bimodal distribution of
VFxs are not completely understood, although it has been
hypothesized that biomechanical factors due to the varia-
tions in the curvature of the spine contribute to the
increased VFx incidence in these regions. For example,
the maximum thoracic kyphosis occurs around T7-T8; this
may result in greater anterior bending moments and
increased risk of anterior wedge fractures in this region.
In support of this theory, Briggs et al. [8] used a
biomechanical model of the spine to demonstrate that
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Fig. 1 This figure highlights the bimodal distribution of vertebral
fractures, and the factors that contribute to vertebral fracture etiology.
Fractures occur when the loads applied to a vertebral body exceed its
strength. The loads applied to the vertebral body are determined by a
number of factors, including the specific activity (including falls) and

associated body posture; subject height and weight; spinal curvature;
neuromuscular function; and intervertebral disc degeneration. Verte-
bral body strength is determined by vertebral body size, shape, bone
density, microarchitecture, and bone tissue properties. F—force
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elderly subjects with higher thoracic kyphosis have greater
anterior bending moments, as well as increased compres-
sive and shear forces on their vertebral bodies.

At the thoracolumbar junction, the spinal curvature
transitions from kyphotic to lordotic, and the rigid thoracic
cage gives way to a more mobile lumbar spine. It is
possible that the higher incidence of VFxs at T12-L1 is due
to increased load-bearing by the vertebral bodies, as the rib
cage no longer helps support superincumbent loads at these
spinal levels. Moreover, the transition from a relatively
rigid thoracic spine/rib cage construct to a more mobile
lumbar region may contribute to increased fracture risk,
although the mechanism underlying this is not completely
understood.

Another factor that may contribute to the uneven
distribution of VFxs includes variations in BMD and bone
strength along the spine. Vertebral compressive failure
loads generally increase from the thoracic to lumbar spine
[9]. However, Burklein et al. [10] compared the compres-
sive strength of T6, T10, and L3 vertebrae in 119 cadavers,
and reported only modest correlations between the different
levels (eg, r2=0.37 for T6 vs L3), suggesting a heteroge-
neity in bone strength along the spine that may contribute to
variations in fracture incidence at different regions of the
spine.

Factor of Risk for Fracture

When engineers design a structure, they consider the forces
that the structure is expected to withstand, and compute a
“safety factor,” which is the ratio of the structure’s strength
to the loads it must withstand. When this ratio approaches
1.0, the structure is at risk to fail. A similar concept can be
used to explore fragility fracture of bones, defining the ratio
of loads applied to the bone to its strength as the “factor of
risk”:

6 ¼ Load

Strength

When the factor of risk (6) exceeds 1.0 (ie, the loads
applied to a bone exceed its strength), a fracture is predicted
to occur. Using this approach, Myers and Wilson [11]
showed that at very low BMD values, many routine
activities of daily living could cause VFxs. Furthermore,
at the lumbar spine, the factor of risk for VFxs during
forward bending and lifting increases with age in both
sexes, more so in women than men, and mimics the
observed incidence of VFx [12]. Melton et al. [13] recently
reported that a 1-SD increase in the factor of risk, computed
for forward bending and lifting, was associated with a 1.8-
fold increased risk of any prevalent vertebral deformity and

a 2.9-fold increased risk of a moderate or severe vertebral
deformity. In comparison, for a 1-SD decrease in spine
areal bone mineral density (aBMD), the risk of any
vertebral deformity and moderate or severe deformity was
increased 1.3-fold and 1.8-fold, respectively. These findings
demonstrate the potential utility of the factor-of-risk
approach in assessing VFx risk, and the relative ineffec-
tiveness of using aBMD alone to predict VFx risk.

To further improve this biomechanical approach for
predicting VFx risk, it is necessary to identify the activities
that cause VFxs, and then to accurately predict both the
loads on the spine and the strength of the vertebral body for
those loading conditions.

Activities Associated with Vertebral Fractures

Unlike the strong association between falls and hip fracture,
relatively little is known about events associated with VFxs,
in part because only one third of VFxs come to medical
attention. A retrospective chart review of activities associ-
ated with painful VFxs reported that fractures were often
associated with moderate trauma such as a car accident,
lifting, and falling, but that fully 50% were reported as
occurring “spontaneously” [14]. Patel et al. [15] reported
that nearly half of acute VFxs were spontaneous (with 64%
of these noticed when the patient was getting out of bed),
37% occurred during trivial housework, and 17% were due
to moderate or serve injury. In a recent study in men, 73.8%
of clinical VFxs were precipitated by no known trauma or
by low-energy trauma, including falls in 57.3% [16••].
These latter findings are provocative, and they suggest that
in addition to their prominent role in the etiology of non-
VFxs, falls may also play a key role in VFxs as well. Yet,
there is little known about the association between falls and
VFxs (ie, What type of fall is most risky for VFxs? How are
forces transmitted through the spine during different types
of falls?). A more thorough investigation of the activities
associated with VFxs would provide information about the
mechanical loads on the spine that lead to VFxs, and would
allow for more accurate biomechanical assessment of VFx
risk.

Estimating Loads on the Spine

To compute the factor of risk for VFxs, it is necessary to
accurately estimate loads on the spine for various activities.
In general, it is difficult to quantify the forces acting on the
spine at any given time, since these forces cannot be
directly measured. Instead, these forces are typically
measured indirectly by quantifying intradiscal pressure
[17], or estimated using biomechanical models [18]. Most
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biomechanical models of the spine have been developed
with the primary goal of exploring the causes of low back
pain. These models provide estimates of the loads applied
to the lumbar spine during occupational tasks, such as
bending and lifting. The simplest models consider only the
erector spinae and rectus abdominis muscles in sagittally
symmetric flexion and extension tasks. More sophisticated
models incorporate multiple muscles, relying on optimiza-
tion schemes to partition the forces among the various
muscle groups. Although all of these models make several
simplifying assumptions, predictions of spine forces using
these models correlate strongly with intradiscal pressure
measurements and electromyogram recordings of muscle
activity [19, 20]. Moreover, predictions of spinal compres-
sion forces obtained using a variety of techniques show
reasonable agreement, lending validity to the overall
approach [18].

For assessment of VFx etiology, there are two major
limitations in current approaches for prediction of spine
loads. First, whereas there are numerous models for the
lumbar spine, few biomechanical models have been
developed to estimate vertebral loading in the thoracic
spine. Those that are available were designed to study
respiratory mechanics, scoliosis, and rib cage deformities,
but not loading of the thoracic spine during activities of
daily living. Using experimental data on the stiffness of the
thoracic spine, rib cage, and sternum, we have recently
developed a new quasistatic stiffness-based biomechanical
model to calculate loads on the thoracic and lumbar spine
during bending or lifting tasks that may prove useful for
identifying activities that generate high forces on vertebrae
in the thoracic spine [21].

A second limitation in current spine models is that
because the majority of biomechanical models are intended
to study occupational low back pain, they generally use
anthropometric variables relevant to young- to middle-aged
men. Estimation of spinal loads is sensitive to subject
height, weight, and trunk muscle geometry; therefore,
individual differences in these values should be addressed
to get accurate predictions of spinal loads. In particular, it
has been argued that sex-related differences in trunk muscle
geometry should be considered in developing biomechan-
ical models of the torso [22].

Vertebral Body Strength

Variation in vertebral compressive strength is determined
mostly by vertebral size (and therefore bone mass) and
bone density, with laboratory studies reporting that aBMD
explains 50% to 70% of the variability in vertebral
compressive strength [23]. Other features such as micro-
architecture, collagen characteristics, microdamage accu-

mulation, mineralization, osteocyte number, and viability
may also play a role, although their relative contribution to
whole vertebral strength remains ill defined.

Whereas several studies have demonstrated an important
role of microarchitecture in determining the mechanical
behavior of isolated trabecular bone specimens, the contri-
bution of trabecular and cortical bone microarchitecture to
whole vertebral strength is less well understood, and
difficult to isolate due to dominant influence of vertebral
size, shape, and bone mass. For example, Fields et al. [24•]
recently reported that the addition of trabecular micro-
architecture improved the correlation with vertebral
strength from r2=0.57 for bone mass alone to r2 = 0.85
for bone mass plus microarchitecture. Properties of the
cortical shell have also been shown to contribute promi-
nently to whole vertebral biomechanical behavior [25, 26].
Of great interest are recent studies showing that micro-
structural heterogeneity may contribute to vertebral fragility
independently of bone mass [27, 28•]. Many clinical studies
also provide supporting evidence for the important role of
trabecular microarchitecture in vertebral fragility, showing
deteriorated trabecular and cortical microarchitecture
(assessed by morphometric analysis of iliac crest biopsies)
in patients with VFxs. More recently, noninvasive assess-
ment of trabecular and cortical bone microarchitecture by
high-resolution peripheral computed tomography (hr-
pQCT) has shown microstructural deficits, particularly in
cortical bone, to be associated with increased severity of
VFxs in postmenopausal women [29••].

Noninvasive Measurements of Vertebral Strength

Several methods are available for noninvasively estimating
the mechanical strength of a vertebral body, an estimate of
its ability to withstand mechanical loading. The general
approach used to validate these noninvasive methods is to
use human cadaveric spines to determine which noninva-
sive assessments of vertebral bone density and/or geometry
are most strongly correlated with vertebral strength.
Generally, these studies show modest to strong correlations
(r2~0.30–0.80) between spine aBMD assessed by dual-
energy x-ray absorptiometry (DXA) or between QCT-based
measures of bone density combined with cross-sectional
area, and vertebral compressive strength [23, 30]. However,
alternate approaches using QCT-based finite element
analysis (FEA) to predict bone strength appear promising.
In this technique, a three-dimensional QCT scan is
converted into a finite element model on a voxel-by-voxel
basis, with assignment of material properties based on the
volumetric bone mineral density (vBMD) of each voxel
[31]. Laboratory studies suggest that QCT-based FEA is
more strongly associated with vertebral compressive
strength than QCT measures of bone density and cross-
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sectional area [30]. In a seminal study over a decade ago,
Faulkner et al. [32] developed patient-specific finite
element models from spine QCT scans, and showed that
these models more successfully discriminated fracture
patients from controls than BMD measurements alone.
More recently, Melton et al. [13] reported that decreased
vertebral compressive strength, assessed by QCT-FEA, was
associated with prevalent VFxs, with odd ratios of 1.4 (95%
CI, 1.1–1.8) and 2.9 (95% CI, 1.8–4.8) for mild and severe
vertebral deformities, respectively. In comparison, odds
ratios for lumbar spine aBMD measurements were 1.2
(95% CI, 0.9–1.6) and 1.8 (95% CI, 1.2–2.6), respectively,
for mild and severe vertebral deformities. Moreover, QCT-
based FEA has been used in several studies to assess the
effect of osteoporosis therapies on vertebral strength, and
have demonstrated a greater sensitivity to detecting gains in
strength than aBMD measurements [33, 34, 35•, 36]. Most
recently, investigators are applying multiscale and nonlinear
FEAs to study vertebral failure processes in greater detail
[37–40].

Vertebral Fracture Cascade

As previously stated, prevalent VFx are possibly the
strongest predictor of future fracture risk, particularly VFxs,
independent of aBMD measurements [2, 3, 41, 42].
However, it is unclear why one VFx predisposes a person
to more fractures, although there are a number of factors
that may contribute to this phenomenon. It is possible that
VFxs are an indicator of overall poor bone strength along
with deteriorated trabecular and cortical microstructure that
would predispose one to multiple fractures. It is also likely
that the presence of a VFx fundamentally alters the
mechanical loads experienced by the adjacent vertebral
bodies. In fact, estimation of compressive and shear spinal
loads using a biomechanical model predicted higher loads
in subjects with a single VFx than those with no fracture
[43]. Moreover, increased thoracic kyphosis that may result
from anterior wedge fractures increases vertebral loads [8].
Altogether, this altered mechanical loading environment
may have an important role in contributing to the cascade
of VFxs.

Other Age-Related Changes that May Contribute
to Vertebral Fractures

Several morphologic and functional changes to the muscu-
loskeletal system occur with advanced age that may also
contribute to changes in the mechanical loading of vertebral
bodies, making them more likely to sustain a fracture.
These changes include degeneration of intervertebral discs,

loss of balance and coordination leading to falls, and
decreased muscle quality and strength.

Intervertebral Disc Degeneration

The intervertebral discs of the spine have an important role
in determining the magnitude and distribution of forces that
are transmitted to the vertebral bodies. With increased age,
intervertebral discs progressively deteriorate, causing them
to become more fibrous and less able to distribute
compressive stress evenly, and as a consequence some
parts of the vertebral body are subjected to high stress
concentrations. In particular, severe disc degeneration
causes increased load-bearing by the neural arch and
posterior elements during upright stance, and decreased
loading on the vertebral body, which may lead to
progressive loss of bone mass in the anterior vertebral
body [44]. As a consequence of this altered load distribu-
tion, the anterior vertebral body is stress-shielded during
normal erect posture, but severely overloaded when the
spine is flexed [45]. This sequence of changes to the spine
may be a mechanism by which the anterior region of the
vertebral body becomes vulnerable to osteoporotic fracture,
why forward bending movements may precipitate VFxs,
and why disc degeneration has been reported to be
associated with VFxs [46].

Changes in Neuromuscular Function

Lean muscle mass typically peaks in the mid-20 s, then
progressively diminishes throughout life [47]. Muscular
strength, conversely, is largely maintained at peak levels
until the fifth or sixth decade, after which accelerated losses
occur, with strength decreasing 24% to 36% by the age of
70 years [48]. Not only does peak muscle force production
diminish with advancing age, but rate of muscle force
development and power also decline [49]. These changes in
force production by muscles could detrimentally change the
loading of the spine, as coordinated antagonistic muscle
contraction is key for maintaining the stability of the spine
during flexion and extension tasks [50]. A reduction in the
intrinsic spine stability may contribute to the poorer balance
and postural stability seen with increasing age, and in
subjects with osteoporosis. Accordingly, this decreased
muscle function may further contribute to falls that lead to
fractures.

Conclusions

VFxs are common and they lead to profound negative
effects on quality of life and health status. The mechanisms
underlying VFxs are multifactorial, and include factors
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related to vertebral strength and to the forces applied to the
vertebral column. Better understanding of VFx etiology is
hampered by the fact that a minority come to clinical
attention, and therefore the factors and activities that cause
VFxs remain ill defined, including possible differences in
the etiology of acute fractures versus those of slow onset.
Finally, many factors may contribute to the vertebral
fracture cascade, and additional work to elucidate the
precise mechanical, morphologic, and biological mecha-
nisms that underlie this phenomenon is needed to improve
strategies for preventing VFxs.
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